Топливный насос высокого давления

Причины выхода из строя

Причины поломки могут быть самыми разными. В первую очередь,
это износ или механическая поломка частей топливного насоса,
которая часто вызывается регулярной ездой с почти пустым баком,
из-за чего погружные насосы не могут нормально охлаждаться.

Самыми распространенными симптомами неисправности топливного насоса является недостаточное
распыление на высоких скоростях, потеря мощности при разгоне, потеря мощности автомобиля,
в условиях напряженной работы, и, наконец, не заводится двигатель.

Частая езда с почти пустым баком способствует быстрому выходу
из строя топливного насоса современного автомобиля, будь то бензиновый или дизельный.

При поломке рекомендуется не ремонт, а замена топливного насоса для обеспечения оптимального режима подачи топлива.
Прежде всего, это касается новых автомобилей, насосы для которых часто выполняются не разборными.

Устранение мелкий дефект вовремя, помогает избежать серьезных проблем в дальнейшем.
Если резко стал наблюдаться шум или снижение мощности мотора, то первым делом осмотрите шланги,
проверьте предохранители и электрические контакты.

Связанные термины

ТНВД является дорогостоящим устройством, которое очень требовательно к качеству топлива и смазочных материалов. Если автомобиль эксплуатируется на горючем низкого качества, такое топливо обязательно содержит твердые частицы, пыль, молекулы воды и т.д.

Распространенные признаки неисправностей в работе ТНВД и форсунок представляют собой следующие отклонения от нормы:

  • расход топлива заметно увеличен;
  • отмечается повышенная дымность выхлопа;
  • в процессе работы присутствуют посторонние звуки и шум;
  • мощность и отдача от ДВС заметно падают;
  • наблюдается затрудненный пуск;

Современные моторы с ТНВД  оснащены электронной системой топливного впрыска. ЭБУ дозирует подачу топлива в цилиндры, распределяет этот  процесс по времени, определяет нужное количество дизтоплива. Если владелец замечает малейшие перебои в работе двигателя, то это является безотлагательным поводом для немедленного обращения в сервис.

  • степень равномерности подачи топлива;
  • давление и его стабильность;
  • частота вращения вала;

Основные неисправности бензонасоса

Состоит эта пара из двух частей – поршня (он же плунжер) и гильзы (втулки). Поскольку в узле создается высокое давление, то утечки между составными элементами не допускаются. Поэтому рабочие поверхности поршня и гильзы имеют высокую степень обработки, поэтому не редко пару называют прецизионной.

Суть работы пары построена на возвратно-поступательном перемещении плунжера внутри втулки. При этом посредством каналов или клапанов обеспечивается попадание топлива в надплунжерную полость и отвод его после сжатия.

Работает все так: при перемещении поршня вниз открывается канал или клапан подачи (зависит от устройства ТНВД), и топливо закачивается в полость. При передвижении вверх подача прекращается (канал или клапан закрывается) и плунжер начинает сжимать дизтопливо.

В общем, работа самой плунжерной пары очень проста, но существует множество нюансов и особенностей, в том числе и конструктивных, которые влияют на функционирование этого узла. Поэтому принцип работы ТНВД следует рассматривать отдельно по каждому из указанных видов.

Устройство опережения впрыска

Ужесточение экологических норм и требований касательно выбросов вредных веществ в атмосферу привело к тому, что механические топливные насосы высокого давления для дизельных автомобилей стали вытесняться системами с электронной регулировкой. Механический насос попросту не смог обеспечить дозирование топлива с необходимой высокой точностью, а также не был в состоянии максимально быстро реагировать на динамично меняющиеся режимы работы двигателя.

Всемирно известные производители Bosch, Nippon Denso и другие предложили системы электронного управления подачей топлива. Указанные разработки основывались на топливном насосе VЕ. Такие системы позволяли добиться повышения точности дозирования топлива в каждый цилиндр по отдельности.

Внедрение электронных систем обеспечивало уменьшение между циклами нестабильности процесса сгорания топливно-воздушной смеси, а также снижение неравномерностей в процессе работы дизельного двигателя на холостом ходу.

Некоторые системы имели в своей конструкции клапан быстрого действия, что позволило разделить процесс впрыска топлива на две фазы. Двухфазный впрыск привел к конечному уменьшению жесткости самого процесса сгорания смеси.

Полученная точность в процессе управления системой впрыска обеспечила снижение выбросов токсичных веществ благодаря более полному сгоранию топливно-воздушной смеси, а возросшая эффективность такого сгорания повысила КПД двигателя и увеличила итоговую мощность силовой установки.

Электронные системы получили топливные насосы распределительного типа. Такие насосы оборудованы управляемыми устройствами, которые осуществляют регулировку положения дозатора. Дополнительно имеется клапан для опережения впрыска горючего.

Данная схема успешно применяется на последних моделях дизельных автомобилей от ведущих мировых концернов. К таким можно отнести BMW, Opel, Audi, Ford, и т.д. Насосы подобного типа позволяют получить показатель давления впрыска на отметке в 1000 кгс/см2.

Система непосредственного впрыска с топливным насосом VP-44, представленная на рисунке, включает в себя:

  • А-группу исполнительных механизмов и датчиков;
  • B-группу приборов;
  • С-контур низкого давления;
  • D- систему для обеспечения подачи воздуха;
  • E- систему для удаления вредных веществ из отработанных газов;
  • M-крутящий момент;
  • CAN-бортовую шину связи;
  1. датчик контроля хода педали для управления топливоподачей;
  2. механизм отключения сцепления;
  3. контакт тормозных колодок;
  4. регулятор скорости ТС;
  5. выключатель свечей накаливания и стартера;
  6. датчик скорости ТС;
  7. индуктивный датчик частоты вращения коленвала;
  8. датчик температуры охлаждающей жидкости;
  9. датчик измерения температуры воздуха, поступающего во впуск;
  10. датчик давления наддува;
  11. датчик пленочного типа для измерения массового расхода воздуха на впуске;
  12. комбинированная приборная панель;
  13. система кондиционирования с электронным управлением;
  14. диагностический разъем для подключения сканера;
  15. блок управления временем включения для свечей накаливания;
  16. привод ТНВД;
  17. ЭБУ для управления двигателем и ТНВД;
  18. ТНВД;
  19. фильтрующий топливный элемент;
  20. топливный бак;
  21. датчик форсунки, контролирующий ход иглы в 1-ом цилиндре;
  22. свеча накаливания штифтового типа;
  23. силовая установка;

Устройство ТНВД VP- 44

  1. насос для подкачки топлива;
  2. датчик положения и частоты насосного вала;
  3. блок управления;
  4. золотник;
  5. электромагнит подачи;
  6. электромагнит угла опережения впрыска;
  7. гидропривод исполнительного механизма для изменения угла опережения впрыска;
  8. ротор;
  9. кулачковая шайба;

Система включает в себя контур низкого давления. Топливоподкачивающий насос в ТНВД VP-44 представляет собой шиберный насос. Наблюдается зависимость давления, которое создается насосом для подкачки топлива на стороне нагнетания топлива от той частоты, с которой происходит вращение колеса насоса. Указанное давление при увеличении частоты вращения имеет непропорциональный показатель.

Регулирующий давление клапан находится вблизи от топливоподкачивающего насоса. Он соединен с отводящим пазом через специальное отверстие для пропуска потока. Клапан отвечает за изменение давления нагнетания топливоподкачивающего насоса в зависимости от необходимого расхода горючего.

Гидравлическая схема насоса:

  1. Гидравлическая схемаблок управления;
  2. клапан регулировки давления;
  3. поршень клапана регулировки давления;
  4. клапан дросселирования перепуска;
  5. отводной канал;
  6. дроссель;
  7. блок управления топливным насосом высокого давления;
  8. поршневой демпфер;
  9. электромагнитный клапан управления подачей топлива;
  10. нагнетательный клапан;
  11. форсунка;
  12. электромагнитный клапан установки начала впрыска;
  13. распределительный ротор;
  14. насосная секция ТНВД с плунжерами, движущимися радиально;
  15. датчик угла поворота приводного вала ТНВД;
  16. устройство опережения впрыска;
  17. насос для подкачки топлива;

Контур низкого давления

Если давление топлива превысит заданную величину, тогда посредством торцевой кромки поршня (3) открываются отверстия. Указанные отверстия расположены радиально. Через них поток горючего сливается по каналам насоса к специальному подводящему пазу. В тех случаях, когда давление находится на низком уровне, тогда радиальные отверстия закрыты, так как на них воздействует сила пружины. Натяжение пружины определяет величину давления.

Топливный насос высокого давления

Охлаждение топливоподкачивающего насоса, а также удаление воздуха осуществляется путем прохождения топлива через клапан дросселирования перепуска (4), который привинчен к корпусу насоса.

При помощи данного клапана осуществляется отвод топлива по перепускному каналу (5). Клапан имеет нагруженный пружиной шарик в своем корпусе. Данная конструкция позволяет топливу вытекать только тогда, когда будет достигнуто определенное давления в самом канале.

Дроссель (6) имеет малый диаметр. Такой дроссель связан с линией отвода, которая расположена в корпусе клапана и проходит параллельно основному каналу  для отвода горючего. Указанный дроссель отвечает за автоматическое удаление воздуха из топливоподкачивающего насоса.

Контур высокого давления

Контуром высокого давления принято считать сам ТНВД, а также устройство распределения и регулировки величины и момента начала подачи. Для этого используется только один элемент, который называется электромагнитный клапан высокого давления.

Данные системы отвечают за создание высокого давления в насосной секции ТНВД с радиальным движением плунжеров. Указанная секция создает такое давление, которое требуется для впрыска топлива под давлением около 1000 кгс/см2. В действие её приводит приводной вал, а конструкция состоит из:

  • соединительной шайбы;
  • башмаков с роликами;
  • кулачковой шайбы;
  • нагнетающего плунжера передней части (головки) вала-распределителя;
ПОДРОБНОСТИ:   Замена прокладки клапанной крышки и ремонт гидро-натяжителя цепи ГРМ Ford Focus 1

На рисунке  ниже приведен пример расположения плунжеров:

  • а-цилиндров четыре или шесть;
  • b-для шести цилиндров;
  • с-для четырех цилиндров;
  1. кулачковая шайба;
  2. ролик;
  3. направляющие пазы приводного вала;
  4. башмак ролика;
  5. нагнетающий плунжер;
  6. вал-распределитель;
  7. камера высокого давления;

Система работает таким образом, что крутящий момент от приводного вала передается через соединительную шайбу и шлицевое соединение. Такой момент идет на вал-распределитель. Направляющие пазы (3) выполняют такую функцию, чтобы через башмаки (4) и  находящиеся в них ролики (2)  задействовать в работу нагнетающие плунжеры (5) так, чтобы это соответствовало тому внутреннему профилю, который имеет кулачковая шайба (1). Число цилиндров в дизельном ДВС  равно количеству кулачков на шайбе.

Нагнетающие плунжеры в корпусе вала-распределителя расположены радиально. По этой причине такая система и получила название ТНВД. Плунжеры осуществляют совместное выдавливание поступившего топлива на восходящем профиле кулачка. Далее топливо попадает в главную камеру высокого давления (7).

Процесс распределения топлива при помощи корпуса-распределителя

В основе данного устройства лежат:

  • фланец (6);
  • распределительная втулка (3);
  • расположенная в распределительной втулке задняя часть вала-распределителя (2);
  • запирающая игла (4) электромагнитного клапана высокого давления (7);
  • аккумулирующая мембрана (10), которая разделяет полости, отвечающие за подкачку и слив;
  • штуцеры магистрали высокого давления (16);
  • нагнетательный клапан (15);

На рисунке ниже мы видим сам корпус-распределитель:

  • а- фаза наполнения топливом;
  • b-фаза нагнетания топлива;

Данная система состоит из:

  1. плунжера;
  2. вала-распределителя;
  3. распределительной втулки;
  4. запирающей иглы электромагнитного клапана высокого давления;
  5. канала для обратного слива топлива;
  6. фланца;
  7. электромагнитного клапана высокого давления;
  8. канала камеры высокого давления;
  9. кольцевого впускного канала для топлива;
  10. аккумулирующей мембраны для раздела полостей подкачки и сливной полости;
  11. полости за мембраной;
  12. камеры низкого давления;
  13. распределительной канавки;
  14. выпускного канала;
  15. нагнетательного клапана;
  16. штуцера магистрали высокого давления;

На этапе наполнения на нисходящем профиле кулачков плунжеры (1), которые движутся радиально, перемещаются наружу и движутся к поверхности кулачковой шайбы. Запирающая игла (4) в это момент находится в свободном состоянии и открывает впускной топливный канал.

Топливо проходит через камеру низкого давления (12), кольцевой канал (9) и иглу. Далее горючее направляется от топливоподкачивающего насоса по каналу (8) вала-распределителя и попадает в камеру высокого давления. Все излишки топлива обратно вытекают через канал возвратного слива (5).

Нагнетание осуществляется при помощи плунжеров (1)  и иглы (4), которая закрыта. Плунжеры начинают перемещаться на восходящем профиле кулачков к оси вала-распределителя. Так происходит повышение давления в камере высокого давления.

ТНВД системы Common Rail

Устройство топливного насоса с электроприводом подразумевает наличие таких деталей, как:

  • электрический привод;
  • насос;
  • корпус.

Также в блок топливного насоса входит топливный расходомер и первичный фильтр очистки топлива.

Прокачка топлива базируется на работе обратного и редукционного клапанов.
Задача первого – запирать топливную систему в режиме выключенного мотора.
Задача второго – поддерживать давление в системе за счет возврата определенного объема топливо на вход насоса.
Так работает топливный насос высокого давления.

Электронасосы по типу нагнетания разделяются на ряд видов:

  • роликовые,
  • шестеренные,
  • центробежные.

Типы нагнетания топлива и конструкция.

В роликовых насосах топливо нагнетается ротором и перемещающимися в нем роликами.
Когда ролики и ротор расходятся, появившееся в результате свободное пространство заполняется топливом.
Далее подача топлива прекращается, а ротора снова сближается с роликами.
Выпускной канал открывается, и топливо под давлением уменьшающегося объема уходит из насоса.

Поэтому же принципу работают и шестеренные насосы, где за подачу топлива в камеру насоса
отвечает внутренняя шестерня, а за его дальнейшее перемещение – ее взаимодействие с внешней шестерней.

Данные виды насосов устанавливаются исключительно в топливопроводе.
Наиболее современными считаются центробежные или лопастные насосы,
способные обеспечить максимально равномерную подачу топлива и отличающиеся бесшумностью.

Устройство топливного насоса центробежного типа допускает его установку в топливном баке.
Лопасти насоса быстро вращаются в камере, к которой под определенными углами подведены всасывающий
и нагнетательный каналы. Завихрение топлива, которое создается крыльчатками,
позволяет одновременно втягивать топливо из бака и под повышенным давлением переправлять его дальше
в топливную систему.

Рядный вид является «родоначальником» насосов высокого давления, поскольку именно эти ТНВД использовались на первых дизельных установках и применение он, хоть уже и ограниченное, находит и сейчас.

Особенность его заключается в том, что для каждой форсунки предусмотрена своя топливная секция (с одной рабочей парой). Все секции размещены в ряд, отсюда и название типа ТНВД. Разновидностью его является V-образный насос, у которого секции располагаются в два ряда.

В нем плунжеры приводятся в действие от кулачкового вала, который получает вращение посредством привода от коленвала. При этом кулачки воздействуют на поршни секции не напрямую, а через роликовые толкатели. Возвратное передвижение плунжера обеспечивается пружиной.

Интересно в этом типе ТНВД организована регулировка количества топлива, подающегося на форсунки после сжатия. Для этого в гильзе проделано два отверстия – впускное и выпускное, причем первое находится ниже второго. Также на рабочей поверхности поршня сделана винтовая проточка. За счет проворота гильзы относительно плунжера и удается регулировать порции топлива.

А работает все так: при движении вверх, поршень перекрывает оба отверстия, и начинается сжатие топлива. Но при поднятии до определенного уровня, проточка на поршне соединяется со сливным отверстием, из-за чего давление падает, поскольку топливо начинает стекать по проточке, и нагнетательный клапан закрывается, прекращая его закачку в магистраль.

К примеру, при работе мотора под нагрузкой необходимо обеспечить подачу большего количества топлива. Для этого втулка поворачивается так, чтобы отверстие с проточкой совпало как можно позже, тем самым порция дизтоплива, которая пройдет через нагнетательный клапан, будет увеличена.

Для проворота втулки используется рейка, которая имеет постоянное зацепление с зубчатым сектором, установленным на внешней поверхности гильзы. Причем эта рейка воздействует на все топливные секции одновременно, что обеспечивает синхронность регулирования дозировки.

Как уже отмечено, ТНВД помимо сжатия обеспечивает еще и соблюдение момента впрыска. Причем в рядном типе это организовано очень просто – плунжерная пара срабатывает точно на конце такта сжатия. Но здесь имеется очень важный момент – чем крупнее порция впрыскиваемого топлива, тем больше времени нужно, чтобы его подать. То есть, при работе мотора под нагрузкой, впрыск должен начаться раньше.

И это обеспечивает регулятор опережения момента впрыска. В полностью механическом насосе в его качестве выступает центробежная муфта, установленная на кулачковом валу насоса.

В конструкцию этой муфты входят подпружиненные грузики, которые за счет центробежной силы могут расходиться, преодолевая усилие пружин. Это расхождение приводит к тому, что кулачковый вал меняет угол (проворачивается) относительно своего привода. То есть, чем выше скорость вращения этого вала, тем на больший угол грузики его провернут. В результате кулачок будет раньше набегать на толкатель плунжера и момент начала впрыска изменяется.

Также в конструкции используется электромеханический регулятор момента подачи топлива. В такой конструкции электроника посредством датчиков отслеживает параметры работы силовой установки и на их основе через исполнительные механизмы управляет углом начала подачи дизтоплива.

Насосы рядного типа отличаются высокой надежностью и неприхотливостью к качеству топлива. Но из-за ряда недостатков, среди которых значительные габаритные размеры и сравнительно медлительное реагирование на изменение режимов работы мотора, использование этого вида ТНВД сейчас ограничено.

Несколько иной тип насосов высокого давления применяется в топливной системе Common Rail. На конструкции ТНВД здесь сказываются особенности работы самой системы.

В этой системе впрыск контролируется и управляется ЭБУ, поэтому дозировка и момент впрыска топлива в задачу насоса не входят. У него только одна функция – нагнетать топливо в рампу (аккумулятор).

Поэтому конструкция ТНВД сильно упрощена. По сути, насос состоит только из вала, плунжерных пар (от 1 до 3) и клапанов – впускных и нагнетательных. Регуляторы здесь отсутствуют за ненадобностью.

Здесь все просто – вал вращается от привода и плунжеры постоянно нагнетают топливо в рампу. Это и все, что требуется от ТНВД.

На автомобилях применяется два типа бензонасосов, отличающихся не только по конструкции, но и по месту установки, хотя задача у них одна – закачать бензин в систему и обеспечить его подачу в цилиндры.

По типу конструкции бензиновые насосы разделяются на:

  1. Механические;
  2. Электрические.

1. Механический тип

Бензонасос механического типа используется на карбюраторных двигателях. Он обычно располагается на головке блока силовой установки, поскольку привод его осуществляется от распределительного вала. Закачка топлива в нем производится за счет разрежения, которое создается мембраной.

Конструкция его достаточно проста – в корпусе расположена мембрана (диафрагма), которая снизу подпружинена и  по центральной части прикреплена к штоку, связанному с приводным рычагом. В верхней части насоса располагаются два клапана – впускной и выпускной, а также два штуцера, по одному из них бензин втягивается в насос, а из второго он выходит и поступает в карбюратор. Рабочей зоной у механического типа является полость над мембраной.

Работает бензонасос по такому принципу – на распределительном валу имеется специальный эксцентриковый кулачок, который приводит в действие насос. Во время работы двигателя вал, вращаясь, вершиной кулачка воздействует на толкатель, который нажимает на приводной рычаг.

ПОДРОБНОСТИ:   Замена топливного фильтра Рено Дастер Фото инструкция как поменять топливный фильтр на Дастере

ЭБУ получает соответствующие сигналы от различных датчиков. Учитывается положение педали газа, частота вращения вала двигателя, температура охлаждающей жидкости и температура самого топлива. Электронный блок управления получает данные о подъеме иглы форсунок, скорости движения транспортного средства, давлении наддува воздуха и его температуре на впуске.

ЭБУ обрабатывает полученную от датчиков информацию, а затем посылает сигнал на ТНВД. Это обеспечивает подачу необходимого и оптимального количества топлива к форсункам. Дополнительно обеспечивается наилучший угол опережения впрыска с учетом конкретных условий работы двигателя.

Электронный блок управления осуществляет контроль за работой свечей накаливания. ЭБУ следит за периодом накаливания, режимом работы свечей накаливания и периодом после накаливания. Все это происходит с учетом зависимости от температуры.

Ниже приведена схема электронного регулирования одноплунжерного насоса VE от Bosch для дизельного мотора:

  1. датчик начала впрыска;
  2. датчик частоты вращения коленвала и ВМТ;
  3. воздухорасходомер;
  4. датчик температуры ОЖ;
  5. датчик положения педали газа;
  6. блок управления;
  7. устройство ускорителя пуска и прогрева ДВС;
  8. устройство для управления клапаном рециркуляции отработанных газов;
  9. устройство для управления углом опережения топливного впрыска;
  10. устройство для управления приводом дозирующей муфты;
  11. датчик хода дозатора;
  12. датчик температуры топлива;
  13. топливный насос высокого давления;

Ключевым элементом в данной системе выступает устройство для перемещения дозирующей муфты ТНВД (10). Управляет процессами подачи топлива блок управления (6). Информация поступает в блок от датчиков:

  • датчик начала впрыска , который установлен в одной из форсунок (1);
  • датчик ВМТ и частоты вращения коленвала (2);
  • воздухорасходомер (3);
  • датчик температуры охлаждающей жидкости (4);
  • датчик положения педали акселератора (5);
  1. кулачковая шайба;
  2. шаровая цапфа;
  3. плунжер установки угла опережения впрыска;
  4. подводной и отводной канал;
  5. клапан регулировки;
  6. шиберный насос для подкачки топлива;
  7. отвод топлива;
  8. вход топлива;
  9. подвод из топливного бака;
  10. пружина управляющего поршня;
  11. возвратная пружина;
  12. управляющий поршень;
  13. кольцевая камера гидроупора;
  14. дроссель;
  15. электромагнитный клапан (закрытый) установки момента начала впрыска;

Распределительный тип ТНВД

Следующим этапом в развитии дизельных систем питания стало использование насосов распределительного типа.

Особенность этого вида ТНВД заключается том, что в конструкции используется только одна топливная секция, которая обеспечивает подачу на все форсунки. Примечательно, что секция только одна, но в ней может использоваться разное количество плунжерных пар – от 1 до 4.

Существует несколько типов распределительных ТНВД, отличающихся между собой по особенностям работы прецизионных пар и их приводом. В целом, все насосы этого типа делятся на:

  • торцевые;
  • роторные;
  • с внешним приводом (кулачковым).

Отметим, что последний тип из-за низких показателей надежности особого распространения не получил.

Торцевой тип

Насосы с этим приводом – достаточно распространенный вариант и выпускаются они многими именитыми производителями топливной аппаратуры для дизелей.

Устройство топливного насоса высокого давления с этим видом привода подразумевает наличие только одной прецизионной пары, которая одновременно выполняет и роль распределителя – направляет сжатое топливо к требуемой форсунке.

Особенность работы заключается в том, что поршень выполняет не только возвратно-поступательное перемещение, он еще при этом и вращается. Чтобы обеспечить одновременное выполнение нескольких движений, в конструкции используется специальная кулачковая шайба с закрепленными на ней роликами.

Суть работы очень проста – эта шайба за счет воздействия пружин находится поджатой к неподвижному кольцу (упирается в него роликами). В кольце проделаны выемки под ролики. При вращении ролики периодически попадают в имеющиеся выемки, что приводит к возвратно-поступательному движению самой шайбы, которая связана с плунжером, при этом она его сразу же и вращает.

При ходе поршня внутри втулки происходит сжатие дизтоплива, а его вращение обеспечивает открытие того или иного канала, по которому топливо под давлением движется к требуемой форсунке.

Это была описана только работа топливной секции. Но в конструкцию этого насоса входит еще ряд дополнительных элементов:

  • топливоподкачивающий насос (роторно-лопастной);
  • регулятор опережения момента подачи;
  • дозирующее устройство (механическое или электромагнитное);

Если рассматривать все эти дополнительные устройства, то принцип их работы – не сложен.

Подкачивающий насос располагается на валу ТНВД и представляет он собой ротор, с установленными в нем роликами. Вращается этот ротор в статоре, на внутренней поверхности которого проделаны специальные пазы.

В качестве регулятора опережения впрыска выступает неподвижное кольцо (к которому поджата шайба с роликами). Проворачивая ее вокруг оси можно менять угол проворота вала, при котором срабатывает рабочая пара. В движение это кольцо приводится исполнительными механизмами электронного блока управления ТНВД.

Дозировка топлива механическим регулятором выполняется за счет срабатывания специальной муфты. В электромагнитном типе роль дозатора выполняет специальный запорный клапан, который по сигналу от блока управления перекрывает подачу топлива в магистраль.

Роторный тип

Еще один ТНВД распределительного вида, получивший неплохое распространение, имеет так называемый роторный привод (он же – внутренний кулачковый). В этом насосе тоже имеется только одна топливная секция, в которой может использоваться 2, 3 или 4 плунжерные пары.

Пары в этом типе насоса расположены радиально. Плунжеры при этом совершая поступательное перемещение, двигаются навстречу друг другу. Надплунжерные пространства объединены в единую полость – камеру высокого давления. Втулки в плунжерных парах, как таковые – отсутствуют. Их роль выполняют отверстия в валу-распределителе насоса.

В целом, конструкция топливной секции включает кулачковую шайбу, с проделанными пазами на внутренней поверхности. Внутри этой шайбы размещен вал-распределитель с установленными в нем плунжерами. В движение поршни приводятся через специальные роликовые башмаки, ролики которых постоянно контактируют с рабочей поверхностью шайбы.

Суть работы секции такова: при вращении вала, башмаки повторяют форму поверхности шайбы. Попадание на выступ поверхности приводит к вдавливанию башмаков внутрь вала, при этом они толкают плунжеры (происходит поступательное движение). Попавшее ранее в камеру высокого давления топливо сжимается и подается на распределитель, где и перенаправляется на требуемые форсунки.

Но это только принцип работы топливной секции. В конструкцию ТНВД помимо нее входят топливоподкачивающий насос (роторного типа), регуляторы дозировки и момента впрыска, электронный блок управления, который регулирует работу насоса в зависимости от режима работы силового агрегата.

Насосы распределительного типа отличаются компактными размерами и достаточно высоким создаваемым давлением. Но есть и недостатки, главным из которых является короткий срок службы плунжерных пар.

Одноплунжерный насос с электронным управлением

  1. ТНВД;
  2. электромагнитный клапан для управления автоматом опережения впрыска топлива;
  3. жиклер;
  4. цилиндр автомата опережения впрыска;
  5. дозатор;
  6. электромагнитное устройство изменения топливоподачи;
  7. ЭБУ;
  8. датчик температуры, давления наддува, положения регулятора топливоподачи;
  9. рычаг управления;
  10. возврат топлива;
  11. топливоподача к форсунке;

Автомат опережения впрыска управляется электромагнитным клапаном (2). Данный клапан обеспечивает регулировку давления топлива, которое действует на поршень автомата. Для клапана характерна работа в импульсном режиме по принципу «открытие — закрытие».

Это позволяет модулировать давление, что зависит от частоты вращения  вала ДВС. В момент открытия клапана давление падает, а это влечет за собой уменьшение угла опережения впрыска. Закрытый клапан обеспечивает увеличение давления, которое перемещает поршень автомата в сторону, когда угол опережения впрыска будет увеличен.

Данные импульсы ЭМК определяются ЭБУ и зависят от режима работы и температурных показателей двигателя. Момент начала впрыска определяется при помощи того, что одна из форсунок оборудована индукционным датчиком подъема иглы.

Исполнительные механизмы, которые оказывают воздействие на элементы управления топливоподачей в ТНВД распределительного типа, являются пропорциональными электромагнитными, линейными, моментными или шаговыми электродвигателями, которые выступают в роли привода для дозатора топлива в указанных насосах.

Форсунка с датчиком подъема иглы

Электромагнитный исполнительный механизм распределительного типа состоит из датчика хода дозатора, самого исполняющего устройства, дозатора, клапана изменения угла начала впрыска, который оборудован электромагнитным приводом. Форсунка имеет в своем корпусе встроенную катушку возбуждения (2).

Форсунка, оборудованная датчиком подъема иглы, состоит из:

  • регулировочного винта (1);
  • катушки возбуждения (2);
  • штока (3);
  • проводки (4);
  • электроразъема (4);

Указанный ток в результате обеспечивает создание вокруг катушки магнитного поля. В момент поднятия иглы форсунки сердечник (3)  осуществляет изменение магнитного поля. Это вызывает изменение напряжения и сигнала. Когда игла находится в процессе подъема, тогда импульс достигает своего пика и определяется ЭБУ, который управляет углом опережения впрыска.

Полученный импульс  электронный блок управления сравнивает с данными в своей памяти, которые соответствуют различным режимам и условиям работы дизельного агрегата. Затем ЭБУ осуществляет посылку возвратного сигнала на электромагнитный клапан. Указанный клапан соединен с рабочей камерой автомата опережения впрыскивания.

Как происходит дозирование топлива. Электромагнитный клапан высокого давления

Существует три типа ТНВД, они имеют разное устройство, но одно предназначение:

  • рядный;
  • распределительный;
  • магистральный.
ПОДРОБНОСТИ:   Топливный фильтр на Renault Logan 1 и 2 фаза

В первом из них, топливо в каждый цилиндр нагнетает отдельная плунжерная пара, соответственно, количество пар равно количеству цилиндров. Схема распределительного топливного насоса высокого давления, в значительной мере отличается от схемы рядного. Отличие заключается в том, что горючее нагнетается ко всем цилиндрам посредством одной или нескольких плунжерных пар. Магистральный насос нагнетает топливо в аккумулятор, из которого оно в последствии распределяется по цилиндрам.

В авто с бензиновыми двигателями, с системой непосредственного впрыска, горючее качает электрический топливный насос высокого давления, однако оно (давление) там в разы меньше.

Рядный топливный насос высокого давления

Как уже было сказано, он имеет плунжерные пары по числу цилиндров. Его устройство довольно просто. Пары размещены в корпусе, внутри которого имеются подводные и отводные топливные каналы. В нижней части корпуса находится кулачковый вал с приводом от коленвала, плунжеры постоянно прижимаются к кулачкам пружинами.

Принцип работы такого топливного насоса не отличается большой сложностью. Кулачок при вращении набегает на толкатель плунжера, заставляя его и плунжер двигаться вверх, сжимая горючее, находящееся в цилиндре. После перекрытия выпускного и впускного каналов (именно в такой последовательности), давление начинает подниматься до значения, после которого открывается нагнетательный клапан, после чего дизтопливо подается к соответствующей форсунке. Данная схема напоминает работу газораспределительного механизма двигателя.

Для регулирования количества поступающего топлива, и момента его подачи, применяется либо механический способ, либо электрический (такая схема предполагает наличие управляющей электроники). В первом случае количество подаваемого горючего изменяется поворотом плунжера.

Схема очень проста: на нем имеется шестерня, она находится в зацеплении с рейкой, которая, в свою очередь, связана с педалью акселератора. Верхняя поверхность плунжера имеет наклон, благодаря чему изменяется момент закрытия впускного отверстия в цилиндре, а значит, и количество горючего.

Момент подачи топлива нужно менять при изменении величины оборотов коленвала. Для этого на кулачковом валу имеется центробежная муфта, внутри которой расположены грузики. С ростом оборотов они расходятся, и кулачковый вал поворачивается относительно привода.

В результате, при повышении оборотов, топливный насос обеспечивает более ранний впрыск, а с уменьшением – более поздний.Устройство рядных ТНВД обеспечивает им весьма высокую надежность и неприхотливость. Поскольку смазывание происходит моторным маслом из смазочной системы силового агрегата, это делает их пригодными для работы на низкокачественном дизтопливе.

Устанавливаются рядные ТНВД на средние и тяжелые грузовики. На легковые автомобили их полностью перестали устанавливать в 2000 году.

Распределительный топливный насос высокого давления

В отличие от топливного насоса рядного, распределительный имеет только одну или две плунжерных пары, которые снабжают топливом все цилиндры. Основные преимущества подобных топливных насосов – меньшая масса и размеры, а также более равномерная подача топлива.

Существует три типа распределительных ТНВД:

  1. с торцевым кулачковым приводом;
  2. с внутренним кулачковым приводом (роторные насосы);
  3. с внешним кулачковым приводом.

Устройство первых двух типов насосов обеспечивает им больший срок эксплуатации, по сравнению с последним, ведь силовых нагрузок на узлы приводного вала, от давления топлива, в них нет.

Схема работы распределительного топливного насоса первого типа выглядит следующим образом. Основной элемент – плунжер-распределитель, который, помимо поступательно-возвратного движения, вращается вокруг своей оси, и тем самым нагнетает и распределяет горючее между цилиндрами.

В действие он приводится кулачковой шайбой, обегающей по роликам неподвижное кольцо.Количество поступающего топлива регулируется как механическим путем, при помощи вышеописанной центробежной муфты, так и посредством электромагнитного клапана, на который подается электрический сигнал. Опережение впрыска топлива определяется поворотом неподвижного кольца на определенный угол.

Роторная схема предполагает несколько иное устройство распределительного топливного насоса. Условия работы такого насоса несколько отличается от того, как работает ТНВД с торцевым кулачковым приводом. Горючее нагнетается и распределяется, соответственно, двумя противолежащими плунжерами и распределительной головкой. Вращением головки обеспечивается перенаправление топлива к соответствующим цилиндрам.

Магистральный ТНВД

Магистральный топливный насос гонит горючее в топливную рампу и обеспечивает более высокое давление, по сравнению с рядным и распределительным насосами. Схема его работы несколько иная. Топливо может нагнетаться одним, двумя или тремя плунжерами, приводимыми в действие кулачковой шайбой или валом.

Выше рассматривались ситуации, когда топливо уже находится в ТНВД. Но к нему оно еще должно поступить, причем пройдя несколько этапов очистки. И это выполняет топливный насос низкого давления (топливоподкачивающий).

Они бывают как внешними, так и внутренними, механическими или электрическими.

В топливных системах с рядными ТНВД обычно используются внешние механические подкачивающие насосы поршневого типа. Привод его осуществлялся от эксцентрика вала насоса высокого давления.

Конструктивно он очень прост. Внутри его корпуса имеется поршень со штоком, контактирующим с эксцентриком и двумя клапанами – впускным и выпускным.

При движении поршня вниз, топливо за счет разрежения через впускной клапан закачивалось в надпоршневое пространство. Движение же его вверх сопровождается закрытием впускного клапана и открытием выпускного, через который поршень выдавливает дизтопливо далее – к фильтру тонкой очистки.

Поскольку его производительность больше, чем требуется для работы мотора, конструктивно предусмотрен сброс излишков обратно в бак.

В ТНВД распределительного типа уже используется внутренний механический подкачивающий насос роторного типа.

Нередко вместо механических узлов используются электрические, которые могут устанавливаться на корпусе ТНВД, в магистралях низкого давления или же непосредственно в баке. Они зачастую используются и в системе безопасности, которая при аварии подает сигнал на его отключение для прекращения подачи топлива в магистрали.

Принципиальных изменений в конструкции ТНВД давно уже не было, автопроизводители используют проверенные временем механизмы лишь дорабатывая отдельные детали и системы управления.

Электромагнитный клапан (клапан установки момента начала впрыска) состоит из таких элементов:

  1. седло клапана;
  2. направление закрытия клапана;
  3. игла клапана;
  4. якорь электромагнита;
  5. катушка;
  6. электромагнит;

За цикловую подачу и дозирование топлива отвечает указанный электромагнитный клапан. Указанный клапан высокого давления встроен в контур высокого давления ТНВД. В самом начале впрыска на катушку электромагнита (5) подается напряжение по сигналу блока управления. Якорь (4) осуществляет перемещение иглы (3)  путем прижима последней к седлу (1).

Когда игла плотно прижата к седлу, тогда топливо не поступает. Давление топлива в контуре по этой причине быстро растет. Это позволяет открыть соответствующую форсунку. Когда нужное количество топлива оказалось в камере сгорания двигателя, тогда напряжение на катушке электромагнита (5) пропадает.

Вся та точность, с которой осуществляется данный процесс, напрямую зависит от электромагнитного клапана. Если попытаться объяснить еще подробнее, то от момента окончания работы клапана. Этот момент исключительно определяется отсутствием или наличием напряжения на катушке электромагнитного клапана.

Избытки нагнетаемого топливо, которое продолжает нагнетаться до момента прохождения роликом плунжера верхней точки профиля кулачка, осуществляют движение по особому каналу. Окончанием пути для горючего становится пространство за аккумулирующей мембраной.

В контуре низкого давления имеют место скачки от высокого давления, которые демпфирует аккумулирующая мембрана. Дополнительным является то, что данное пространство сохраняет (аккумулирует) накопленное топливо для наполнения перед следующим впрыском.

Остановка двигателя осуществляется при помощи электромагнитного клапана. Дело в том, что клапан полностью блокирует нагнетание топлива под высоким давлением. Такое решение полностью исключает необходимость в дополнительном остановочном клапане, который применяется в распределительных ТНВД, где осуществляется управление регулирующей кромкой.

Процесс демпфирования волн давления при помощи нагнетательного клапана с дросселированием обратного потока

Данный нагнетательный клапан (15) с дросселированием обратного потока после завершения впрыска порции топлива препятствует следующему открытию распылителя форсунки. Это полностью исключает такое явление, как дополнительный впрыск, являющийся результатом волн давления или их производных.

Когда начинается подача топлива, тогда конус клапана (3) открывает клапан. В этот самый момент топливо уже нагнетается через штуцер, проникает в магистраль высокого давления и направляется к форсунке. Окончание нагнетания горючего вызывает резкий спад давления.

По этой причине возвратная пружина с силой прижимает конус клапана обратно к седлу клапана. При закрытии форсунки возникают обратные волны давления. Эти волны успешно погашаются дросселем нагнетательного клапана. Все эти действия предотвращают нежелательное подвпрыскивание топлива в рабочую камеру сгорания дизельного двигателя.

Подведем итоги

Данный материал нацелен на максимально доступное и понятное ознакомление пользователей нашего ресурса со сложным  устройством топливного насоса высокого давления и обзором его основных элементов. Устройство и общий принцип работы ТНВД позволяют говорить о безотказной эксплуатации только при условии заправки дизельного агрегата качественным топливом и моторным маслом.

Если же эксплуатировать дизель бережно, строго соблюдать и даже сокращать межсервисные интервалы по замене смазочного материала, учитывать остальные важные требования и рекомендации, тогда ТНВД непременно  ответит своему заботливому  владельцу исключительной надежностью, экономичностью  и завидной долговечностью.